Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Prajitha, C.; * | Sridhar, K.P. | Baskar, S.
Affiliations: Department of Electronics and Communication Engineering/Centre for Interdisciplinary Research, Karpagam Academy of Higher Education, Coimbatore, India
Correspondence: [*] Corresponding author. C. Prajitha, Research Scholar, Department of Electronics and Communication Engineering/Centre for Interdisciplinary Research, Karpagam Academy of Higher Education, Coimbatore, India. E-mail: praji.devi@gmail.com.
Abstract: Electrocardiogram (ECG) signal analyses can enhance human life in various ways, from detecting and treating heart illness to controlling the lives of cardiac-diseased people. ECG analysis has become crucial in medical studies for accurately detecting cardiovascular diseases (CVDs). Cardiac Arrhythmia is one of the major life-threatening diseases. Analyzing ECG signals is the easiest way to detect Arrhythmia. Different noises often corrupt the ECG signals, like power line interference, electromyographic (EMG) noise, and electrode motion artifact noise. Such noises make it difficult to identify the various peaks in the ECG signal for arrhythmia classification. To overcome such problems, Noise Removal-based Thresholding (NRT) framework has been introduced to remove noises from ECG signals and accurately classify Arrhythmia. Discrete Wavelet transform reduces noise from ECG signals in the pre-processing stage. The noise-removed signal is segmented by K-means clustering for R-peak detection by finding all local maximum points from the signal. The signal features are extracted by Burg’s method to obtain good frequency resolution and quick integration for short-time signals in the form of a cumulative distribution function. All features collected from R-peak are fed to the Iterative Convolutional Neural Network (ICNN) and classified the arrhythmia types based on the alignment of a few variables to work well with the Euclidean distance metric. The NRT framework is evaluated based on the data obtained from the MIT-BIH Arrhythmia dataset and achieves the Accuracy of 99.45 %, Positive Prediction of 98.92%, F1-Score of 98.95%, SNR of 35 dB, MSE of 0.001, RMSE of 0.002
Keywords: K-means clustering, Iterative Convolutional Neural Network, arrhythmia classification, R-peak
DOI: 10.3233/JIFS-223719
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2657-2668, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl