Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Yishenga | Jin, Xinb; * | Huang, Haipinga
Affiliations: [a] Faculty of Humanities, Zhaoqing Medical College, Zhaoqing, China | [b] School of Information Technology, Anqing Vocational & Technical College, Anqing, China
Correspondence: [*] Corresponding author: Xin Jin, School of Information Technology, Anqing Vocational & Technical College, Anqing, 246008, China. E-mail: jinxin7009@126.com.
Abstract: This paper focuses on the task of Point-of-interest (POI) recommendation whose goal is to generate a list of POIs for a target user based on his or her history check-in records. Different from the traditional recommendation tasks (e.g., movie recommendation), there are many factors, like temporal factor and geographical factor, which make a great influence on user preference. Though existing POI recommendation methods tend to model the user preference from temporal factor, geographical factor or social factor, they fail to model these factors into a jointly model, leading to learn the suboptimal user preference. To tackle this issue, we propose a Muti-channel Graph Attention Network (MGAN) for POI recommendation which learns the user preference from multiple aspects in a unify model. Specifically, MGAN first constructs several graphs with corresponding contextual features to capture the user preference from temporal, geographical, semantic and social aspects. Then MGAN leverages the graph attention networks to learn the representations of POIs from these graphs. Finally, MGAN estimates the user preference from the history check-in records and other similar users via the learned POI representations. We conduct extensive experiments on real-world datasets. And the results indicate that our proposed MGAN outperforms mainstream POI recommendation methods.
Keywords: Point-of-interest, recommendation, graph attention network, temporal, geographical
DOI: 10.3233/JIFS-222952
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8375-8385, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl