Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Singh, Pardeep; * | Singh, Nitin Kumar | Monika, | Chand, Satish
Affiliations: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
Correspondence: [*] Corresponding author. Pardeep Singh, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India. E-mail: pardeepsinghinfo@gmail.com.
Abstract: One major issue plaguing online social media is hate speech, a complex phenomenon whose identification and target categorization have been studied by the natural language processing community. In recent years, notable studies have been made towards hate speech detection using various mechanisms varying from traditional machine learning to complex deep neural network models. However, these studies mainly focus on high-resource English language. The multilingual societies such as the Indian subcontinent: English, Hindi and Hindi-English code-mixed languages are widespread and convenient for the users. The research works studying hate speech detection in these languages are still very limited. To fill this gap, we propose an mBERT-GRU framework comprising of multilingual BERT embedding and bidirectional GRU layers to learn the cumulative features for hate speech detection and its target categorization. We evaluated our work on three datasets HASOC-2019, HS and HEOT to prove the competitive performance. Our results show that the proposed framework outperformed monolingual and state-of-the-art methods on English, Hindi and Hindi-English code-mixed datasets with Macro-F1 measure values of 0.87, 0.83 and 0.77, respectively.
Keywords: Deep learning, GRU, hate speech detection, multilingual BERT, social media, text analysis
DOI: 10.3233/JIFS-222057
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8177-8192, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl