Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cai, Yuan
Affiliations: School of Digital Commerce, Jiangsu Vocational Institute of Commerce, Nanjing, Jiangsu, China | E-mail: 17314958873@163.com
Correspondence: [*] Corresponding author: School of Digital Commerce, Jiangsu Vocational Institute of Commerce, Nanjing, Jiangsu, China. E-mail: 17314958873@163.com.
Abstract: Accompanied by a series of developments in information technology, such as the Internet of Things, big data, and digital twin technology, these innovations came into existence and began to gain significance. Targeting the issues of hierarchical confusion and inadequate visualization in traditional logistics and warehousing systems, this study begins by analyzing the framework structure of the warehousing system. It uses genetic algorithm calculation to obtain the solution set for optimizing cargo pull objectives. Finally, it proposes a novel intelligent IoT logistics and warehousing system by integrating digital twin technology. The experiment results indicated the genetic algorithm could optimize up to 60% of the cargo pull optimization objective function in this model with at least 300 iterations. The simulation and actual times of outgoing and incoming storage under this model varied between 0 to 1. The error throughout the range was a minimum of 0.1 seconds. The study found that the storage density achieved a maximum value of nearly 98%, while the minimum storage cost was approximately $3 per order and the maximum was $9 per order. Overall, the proposed model can aid enterprises in optimizing their operations by improving efficiency and reducing logistics and warehousing costs, ultimately promoting the digital and intelligent development of the logistics industry.
Keywords: Internet of things, logistics and warehousing systems, digital twins, genetic algorithms, cargo pull optimization
DOI: 10.3233/IDT-240324
Journal: Intelligent Decision Technologies, vol. 18, no. 3, pp. 2407-2420, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl