Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Proceedings of the 15th Conference of the European Society for Clinical Hemorheology and Microcirculation (ESCHM), June 28–July 1, 2009, Pontresina, Switzerland
Article type: Research Article
Authors: Muravyov, Alexei V. | Tikhomirova, Irina A. | Maimistova, Alla A. | Bulaeva, Svetlana V. | Zamishlayev, Andrey V. | Batalova, Ekaterina A.
Affiliations: Department of Medicine and Biology, University of Yaroslavl, Yaroslavl, Russia
Note: [] Corresponding author: E-mail: alexei.47@mail.ru
Abstract: There are evidences that red blood cell (RBC) deformation and aggregation change under their incubation with catecholamines and it is connected with activation of intracellular signaling pathways. The present study was designed to explore the adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism of RBCs together with their microrheological changes. The washed RBCs were resuspended in PBS. In each of the three research sessions RBC suspensions were divided into two aliquots: 1) control (without drug) and 2) with an appropriate drug. After cell incubation RBC deformability (RBCD) and aggregation (RBCA) were estimated. RBC incubation with catecholamines resulted in RBCD changes by 18–30%. RBCs incubation with forskolin facilitated an increase of RBCD by 17% (p < 0.05). A significant deformability rise under dB-AMP incubation was found by 27% (p < 0.01). Ca2+ cell influx, stimulated by A23187, was accompanied by an increase of RBCA; whereas red cell deformability was changed only slightly. On the other hand, Ca2+ entry blocking into the cells by verapamil has led to significant RBCA decrease and RBCD rise. The obtained results make us believe that RBCD change was closely associated with Ca2+ control mechanisms. An effect of Ca2+ concentration increase on RBC microrheology was removed, if it was preliminary added to incubation medium EGTA as Ca2+ chelator. It was found that all four PDE inhibitors: IBMX, vinpocetine, rolipram, pentoxifylline decreased RBCA significantly and, quite the contrary, they increased red cell deformability. Our data have shown that Ca2+ entry increase was accompanied by red cell aggregation rise, while adenylyl cyclase-cAMP system stimulation led to red cell deformability increase and its aggregation lowered. The crosstalk between two intracellular signaling systems is probably connected with phosphodiesterase activity.
Keywords: Adenylyl cyclase, cAMP, phosphodiesterase, red blood cell deformability and aggregation, intracellular signaling pathways, Ca2+-control mechanism
DOI: 10.3233/CH-2010-1317
Journal: Clinical Hemorheology and Microcirculation, vol. 45, no. 2-4, pp. 337-345, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl